Evaluation of frame-based and event-by-event motion-correction methods for awake monkey brain PET imaging.
نویسندگان
چکیده
UNLABELLED PET imaging of nonhuman primates (NHPs) requires correction of head motion if the subjects are scanned awake and their heads are unrestrained, because the NHPs move their heads faster and more frequently than human subjects. This work focuses on designing and validating 2 motion-correction algorithms for awake NHP brain PET imaging. METHODS Two motion-correction methods were implemented for awake NHP brain PET imaging: multiacquisition frame (MAF) and event-by-event (EBE). Motion data were acquired from an external motion-tracking device. The MAF method divides scan data into short subframes, reconstructs each subframe individually, and registers them to a reference orientation. This method suffers from residual intraframe motion and data loss when motion is large because a minimum frame duration is often required. The EBE method, previously implemented for a human brain scanner and adapted for a small-animal PET scanner in this work, eliminates intraframe motion and should have a best accuracy. We first evaluated the accuracy of both motion-correction methods with moving phantom scans. Both motion-correction methods were then applied to awake NHP brain PET studies with a gamma-aminobutyric acid A-benzodiazepine receptor ligand, (11)C-flumazenil, and the reconstructed images were compared with those from a motion-free anesthetized study. RESULTS The phantom studies showed that EBE motion correction recovers the contrast (within 3%) similarly to the static study, whereas MAF motion correction using the standard algorithm setting showed a 25% reduction in contrast from the static case. In awake NHP brain PET imaging, EBE motion correction better recovers the fine structures than the MAF method, as compared with anesthetized studies. CONCLUSION The large magnitude and frequency of NHP head motion suggests that EBE motion correction with accurate externally measured motion data can noticeably alleviate image blurring due to the intraframe motion in the MAF motion-correction method.
منابع مشابه
Evaluation of motion correction methods in human brain PET imaging--a simulation study based on human motion data.
PURPOSE Motion correction in PET has become more important as system resolution has improved. The purpose of this study was to evaluate the accuracy of event-by-event and frame-based MC methods in human brain PET imaging. METHODS Motion compensated image reconstructions were performed with static and dynamic simulated high resolution research tomograph data with frame-based image reconstructi...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملOptimised Motion Tracking for Positron Emission Tomography Studies of Brain Function in Awake Rats
Positron emission tomography (PET) is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2014